MANUAL DE INSTRUCCIONES -

Refractor altacimutal Orion® Observer™ II de 70mm

#10275

Atención al cliente: www.OrionTelescopes.com/contactus Oficinas corporativas: 89 Hangar Way, Watsonville CA 95076 – EE. UU.

Copyright © 2021 Orion Telescopes & Binoculars. Reservados todos los derechos. Queda prohibida la reproducción, copia, modificación o adaptación de cualquier parte o contenido de estas instrucciones de producto sin el previo consentimiento por escrito de Orion Telescopes & Binoculars.

Le felicitamos por haber adquirido un telescopio Orion. Su nuevo refractor altacimutal Observer II de 70 mm es un excelente instrumento de iniciación para explorar las exóticas maravillas del cielo nocturno. Diseñado para ser compacto y fácil de usar, este telescopio le proporcionará muchas horas de diversión a toda la familia.

Si nunca antes ha tenido un telescopio, nos gustaría darle la bienvenida a la astronomía amateur. Tómese su tiempo para familiarizarse con el cielo nocturno. Aprenda a reconocer los patrones de las estrellas de las principales constelaciones. Con un poco de práctica, un poco de paciencia y un cielo razonablemente oscuro alejado de las luces de la ciudad, descubrirá que su telescopio es una fuente inagotable de maravillas, exploración y relajación.

Estas instrucciones le ayudarán a configurar, utilizar correctamente y cuidar de su telescopio. Léalas atentamente antes de empezar.

2

3

4

6

9

9

10

Tabla de contenidos

Lista de piezas Montaje Preparación del telescopio para el funcionamiento Observación astronómica Accesorios opcionales de interés Cuidado y mantenimiento del telescopio Especificaciones

1. Lista de piezas

Pieza Cantio	lad
A – Pata del trípode	3
B – Montura de horquilla	1
C – Perno de montaje del trípode de cabeza hexagonal	
(76,2 mm), con arandela y tuerca de mariposa	
de 5,87 mm	3
D – Tornillos de mariposa de bloqueo de las patas	3
E – Bandeja para accesorios	1
F – Tornillo con arandela y tuerca de mariposa de 9,5 mm	3
G – Tubo óptico	1
H – Botón de horquilla	2
I – Barra de micromovimiento de altura	1
J - Tornillo de anclaje de barra de micromovimiento	1
K - Telescopio buscador de punto rojo	1
L – Diagonal estelar de espejo	1
M – Ocular Kellner de 25 mm	1
N - Ocular Kellner de 10 mm	1
O – Destornillador	1
P – Cubierta antipolvo	1

Advertencia: No mire nunca directamente al Sol a través de su telescopio, ni siquiera por un instante, sin instalar antes un filtro solar protector de fabricación profesional que cubra completamente la parte frontal del instrumento o puede sufrir daños permanentes en los ojos. Los niños pequeños deben usar este telescopio solamente bajo supervisión de un adulto.

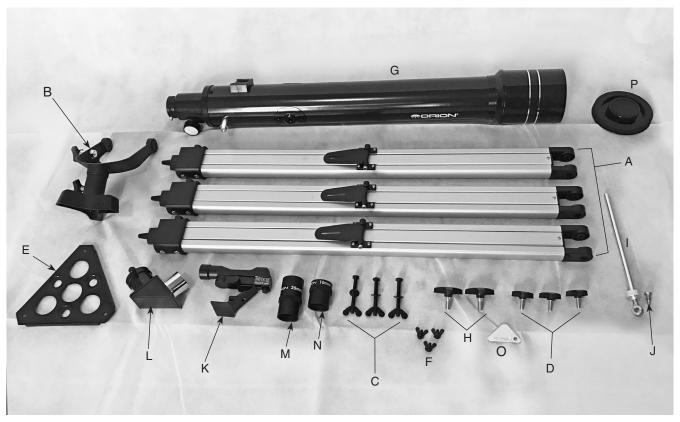


Figura 1. Piezas del telescopio altacimutal Observer II 70.

2. Montaje

- 1. Acople las tres patas del trípode de aluminio (A) a la montura de horquilla (B) (figura 3a) con las tres abrazaderas de las patas con bisagras mirando hacia el interior. Para este fin, se incluyen tres pernos de cabeza hexagonal (C) cada uno de unos 76,2 mm de longitud, con arandelas de 15,87 mm (C) y tuercas de mariposa (se muestran en la figura 1, acopladas a los pernos). Tenga en cuenta que los pernos deben insertarse desde el lado de la pata que tiene el orificio hexagonal, de manera que la cabeza del perno se apoye sobre el agujero hexagonal (figura 3b). La arandela y luego la tuerca de mariposa se colocan en el lado opuesto en el extremo expuesto del perno.
- 2. Acople un tornillo de mariposa de bloqueo de las patas (D) a cada pata como se muestra (figura 4). Extienda la parte interna deslizante de cada una de las tres patas del trípode de altura ajustable a la longitud deseada. Bloquéelo en su sitio apretando los tornillos de mariposa de bloqueo de las patas. No apriete excesivamente los tornillos de mariposa de bloqueo de las patas, ya que podría dañar el collar al que están conectados.
- Ahora coloque el trípode en posición vertical, separando las patas uniformemente para que pueda colocarse la bandeja para accesorios y acoplarla a las tres abrazaderas de las patas.
- 4. Acople la bandeja para accesorios (E) a los soportes de las abrazaderas de las patas (figura 5) con los tres tornillos cortos (F), las arandelas pequeñas (9,5 mm) y las tuercas de mariposa pequeñas incluidas (las arandelas y las tuercas de mariposa se muestran acopladas a los tornillos en la figura 1). Coloque una arandela en el tornillo. A continuación, coloque la bandeja para accesorios en la parte superior de una de las abrazaderas de las patas, de manera que el tornillo de montaje atraviese el agujero de una de las esquinas de la bandeja para accesorios y la ranura de la abrazadera de la pata. A continuación, coloque otra arandela pequeña en el tornillo y enrosque y apriete la tuerca de mariposa. Tal vez le resulte útil utilizar el destornillador incluido (O) para sujetar las cabezas de los tornillos mientras aprieta las tuercas de mariposa. Repita este procedimiento hasta que la bandeja quede acoplada a las tres abrazaderas de las patas.

El trípode y la montura de horquilla están ahora completamente montados (**figura 6**). A continuación, colocará el tubo del telescopio en la montura altacimutal de horquilla.

5. Con el tubo óptico (G) orientado respecto a la montura de horquilla (B) como se indica en la figura 7, alinee los agujeros de las placas de fijación del lateral del tubo óptico con los agujeros de los extremos de la montura de horquilla (7a). A continuación, sujete el tubo óptico a la montura insertando un botón de horquilla (H) a través del

- agujero de cada lateral de la horquilla y enrósquelos en las placas de fijación del tubo óptico (7b). Deben quedar razonablemente apretadas pero aún así permitir el movimiento del telescopio hacia arriba y hacia abajo con una fuerza suave.
- 6. Inserte la barra de micromovimiento de altura (I) a través del agujero del receptáculo metálico de la montura de horquilla (figura 8a). Tal vez tenga que desenroscar el botón de bloqueo de la altura unas cuantas vueltas para dejar espacio para la barra). A continuación, acople el otro extremo de la barra al cilindro de anclaje metálico utilizando el tornillo de anclaje (J) incluido (figura 8b). Utilice el destornillador (O) suministrado para apretar el tornillo.

Por último, tendrá que instalar algunos accesorios y ¡ya estará listo para comenzar a observar el cielo!

- 7. Para acoplar el telescopio buscador de punto rojo (K) al tubo óptico, oriente el telescopio buscador como se indica en la **figura 9** y deslice el pie del soporte en la base del telescopio buscador hasta que haga clic. (Para quitar el telescopio buscador, presione la lengüeta pequeña de la parte posterior de la base y deslice el soporte hacia fuera).
- Inserte la diagonal estelar (L) en el tubo del enfocador y apriete el tornillo de mariposa del cuello del tubo (figura 10). A continuación, inserte el ocular de 25 mm (M) en la diagonal y sujételo apretando ligeramente el tornillo de mariposa de la diagonal.

¡El telescopio ya está completamente montado! Sin embargo, antes de poder utilizarlo de forma eficaz, hay que hacer un par de cosas para preparar el telescopio para su funcionamiento.

3. Preparación del telescopio para el funcionamiento

Alineación y uso del telescopio buscador de punto rojo

El telescopio buscador de punto rojo incluido (**figura 11**) hace que apuntar el telescopio sea casi tan fácil como señalar con el dedo. Es un dispositivo apuntador sin aumento que superpone un diminuto punto rojo LED en el cielo, que muestra exactamente adónde está apuntando el telescopio. Permite localizar con facilidad los objetos antes de observarlos en el telescopio principal de mayor potencia.

Antes de poder utilizar el telescopio buscador de punto rojo, debe quitar la pequeña pestaña de plástico que sobresale del compartimento de la batería (**figura 11**). Al hacerlo, la pila de botón CR-2032 de 3 V preinstalada podrá hacer contacto con los circuitos electrónicos del telescopio buscador a fin de iluminar el LED rojo del buscador. A continuación, puede desechar esta lengüeta.

Para utilizar correctamente el telescopio buscador de punto rojo, debe alinearse con el telescopio principal. Resulta más fácil hacerlo de día, antes de observar por la noche. Siga este procedimiento:

- Primero, retire la tapa antipolvo (P) de la parte frontal del telescopio.
- 2. A continuación, con el ocular de 25 mm ya en el enfocador del paso 8 anterior, apunte el telescopio a un objetivo terrestre bien definido (por ejemplo, la parte superior de un poste de teléfono) que esté al menos a medio kilómetro de distancia. Al apuntar el telescopio, no olvide aflojar el botón de bloqueo del acimut y el botón de bloqueo de micromovimiento (para movimientos grandes de altitud)

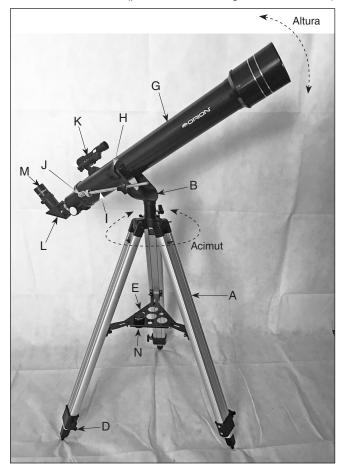
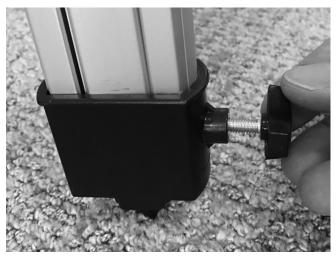
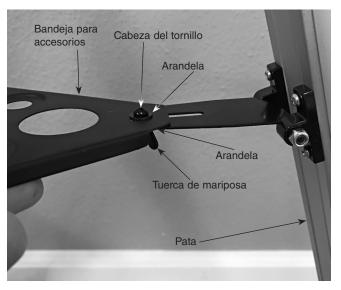



Figura 2. Telescopio refractor altacimutal Observer II 70 completamente montado, con las piezas clave identificadas.

Figura 3. a) Acople las tres patas del trípode a la plataforma de la montura, **b)** asegurándose de que la cabeza hexagonal del perno se apoya sobre el hueco hexagonal de la pata del trípode.


Figura 4. Enrosque un tornillo de mariposa de bloqueo de las patas en cada pata del trípode como se muestra, teniendo cuidado de no apretarlo excesivamente.

para que el telescopio pueda girar libremente alrededor de ambos ejes.

3. Centre el objetivo en el ocular.

Nota: La imagen del telescopio aparecerá invertida como si observara en un espejo, es decir, invertida de izquierda a derecha. Esto es normal para los telescopios refractores utilizados para la observación astronómica con una diagonal estelar estándar. (Para la observación terrestre, recomendamos usar una diagonal de "imagen correcta" opcional, que mostrará una vista correctamente orientada).

- 4. Ahora que un objetivo distante está centrado en el ocular del telescopio principal, encienda el telescopio buscador de punto rojo deslizando el interruptor de encendido a la posición ON (consulte la figura 11). La posición "1" proporciona una iluminación tenue mientras la posición "2" aumenta el brillo de la iluminación. Normalmente, se utiliza un ajuste atenuado bajo un cielo oscuro y un ajuste más luminoso bajo cielos con contaminación lumínica o a la luz del día. Coloque el ojo a una distancia cómoda de la parte posterior de la unidad. Mire a través de la parte posterior del telescopio buscador con ambos ojos abiertos para ver el punto rojo iluminado. El objeto de destino debe aparecer en el campo de visión en algún lugar cerca del punto rojo.
- Deberá centrar el objeto de destino en el punto rojo. Para ello, sin mover el telescopio, utilice los botones de ajuste vertical y horizontal del telescopio buscador (mostrados en la figura 11) para colocar el punto rojo sobre el objeto.
- 6. Cuando el punto rojo quede centrado en el objeto distante, asegúrese de que el objeto sigue centrado en el ocular del telescopio. Si no lo está, vuelva a centrarlo y ajuste de nuevo la alineación del telescopio buscador. Cuando el objeto esté centrado en el ocular del telescopio y en el punto rojo del telescopio buscador, el telescopio buscador estará correctamente alineado con el telescopio. La alineación del telescopio buscador de punto rojo debe

Figura 5. Acople la bandeja para accesorios a cada uno de los soportes de la abrazadera de las patas del trípode utilizando los accesorios suministrados.

revisarse antes de cada sesión de observación. At the end of your observing session, be sure to slide the power switch on the red dot finder scope to OFF to preserve battery life.

Al final de la sesión de observación, recuerde deslizar el interruptor de encendido del telescopio buscador de punto rojo a la posición OFF para ahorrar batería.

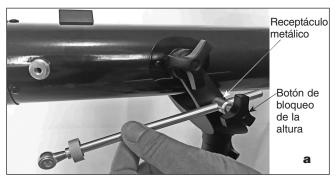

Figura 6. Montura altacimutal y trípode montados.

Figura 7. a) Coloque el tubo óptico en la montura de horquilla, alineando los agujeros de las placas de fijación del tubo con los de la montura de horquilla. **b)** Enrosque el botón de horquilla en el agujero roscado de las placas de fijación.

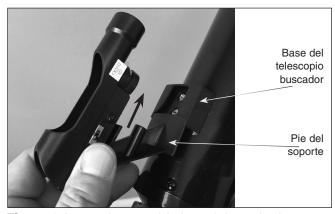
Descripción general de la montura "altacimutal"

El refractor altacimutal Observer II de 70 mm incluye una montura "altacimutal" que permite el movimiento en dos ejes perpendiculares: altura (arriba/abajo) y acimut (izquierda/derecha) (consulte la **figura 2**). De esta manera, apuntar el telescopio es fácil e intuitivo. Para mover el telescopio en la dirección del acimut, afloje el botón de bloqueo del acimut, sujete el telescopio y gírelo suavemente hasta la posición deseada. A continuación, vuelva a apretar el botón de bloqueo del acimut. Para mover el telescopio en la dirección de la altura, afloje el botón de bloqueo de la altura y suba o baje el tubo hasta la posición deseada. A continuación, vuelva a apretar el botón de bloqueo de la altura. Si el telescopio se mueve con excesiva facilidad en la dirección de altura, apriete un poco los botones de horquilla. Por supuesto,

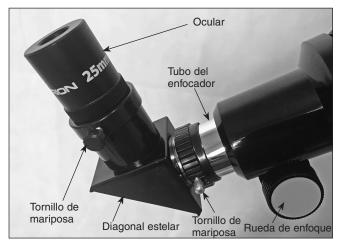
Figura 8.a) Inserte la barra de micromovimiento a través del agujero del receptáculo metálico de la montura de horquilla. **b)** Acople el otro extremo de la barra al cilindro de anclaje del tubo óptico.

puede mover simultáneamente el telescopio en altura y acimut aflojando ambos botones de bloqueo.

Dado que hacer ajustes precisos a la altura del telescopio puede ser difícil, el refractor altacimutal Observer II de 70 mm viene equipado con una barra de micromovimiento de altura y una rueda selectora (**figura 12**). Tras hacer ajustes grandes a la altura moviendo el tubo con la mano, puede mover el telescopio gradualmente girando la rueda selectora de la barra de micromovimiento (el botón de bloqueo de la altura debe estar apretado para que sea posible). El telescopio subirá o bajará un poco, dependiendo del sentido en que gire la rueda selectora. El movimiento preciso puede ser útil para centrar un objeto en el ocular.


4. Observación astronómica

Para muchos, esta será su primera incursión en el apasionante mundo de la astronomía amateur. A continuación, encontrará información y consejos de observación que le ayudarán a comenzar.


Selección de un sitio de observación

Al elegir un lugar para observar, aléjese lo máximo posible de luces artificiales directas, tales como farolas, luces de porches y faros de automóviles. El resplandor de estas luces afectará notablemente a su visión nocturna adaptada a la oscuridad. Coloque el equipo sobre una superficie de césped o tierra, que no sea de asfalto, ya que el asfalto irradia más calor. El calor perturba el aire circundante y degrada las imágenes vistas a través del telescopio. Evite observar sobre chimeneas y tejados, ya que a menudo se elevan de ellos corrientes de aire caliente. De manera similar, evite observar desde un interior a través de una ventana abierta (o cerrada), ya que la diferencia de temperatura entre el aire interior y exterior hará que la imagen aparezca borrosa y distorsionada.

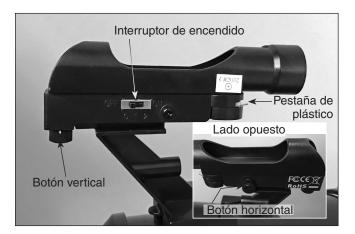
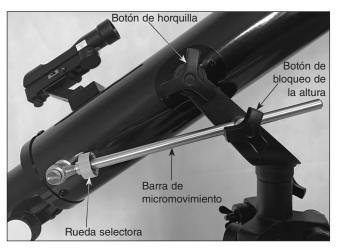

Si es posible, huya de la contaminación lumínica del cielo de la ciudad y diríjase a lugares con cielos más oscuros. Le sorprenderá el mayor número de estrellas y objetos de cielo profundo que pueden observarse en un cielo oscuro.

Figura 9. Inserte el soporte del telescopio buscador de punto rojo en la base cerca del enfocador como se indica.

Figura 10. Sujete la diagonal estelar en el tubo del enfocador con el tornillo de mariposa del cuello del tubo y, a continuación, instale el ocular en la diagonal.


Figura 11. El telescopio buscador de punto rojo tiene botones de ajuste vertical y horizontal (insertado) para alinearlo con el telescopio.

Visibilidad y transparencia

Las condiciones atmosféricas varían considerablemente de una noche a otra. La visibilidad se refiere a la estabilidad de la atmósfera de la Tierra en un momento dado. Cuando la visibilidad es mala, la turbulencia atmosférica hace que los objetos vistos a través del telescopio parezcan "hervir". Si al mirar el cielo las estrellas parpadean notablemente, la visibilidad es mala y solo podrá observar el cielo con aumentos bajos. Con aumentos mayores, las imágenes no aparecerán nítidas. Probablemente no pueda observar los detalles sutiles de los planetas y la Luna.

Si la visibilidad es buena, el parpadeo de las estrellas es mínimo y las imágenes parecen estables en el ocular. La visibilidad es mejor si se observa hacia arriba y empeora al acercarse al horizonte. Además, la visibilidad suele mejorar después de la medianoche, cuando gran parte del calor absorbido por la Tierra durante el día se ha irradiado al espacio.

Especialmente importante para la observación de objetos tenues es una buena "transparencia" del aire, sin humedad, humo ni polvo. Todos tienden a dispersar la luz, lo que reduce

Figura 12. La rueda selectora y la barra de micromovimiento permiten un control de apuntado preciso de la altura.

el brillo de un objeto. La transparencia se evalúa según la magnitud de las estrellas más tenues se pueden observar a simple vista (es deseable que sean de magnitud 5 o 6).

Enfriamiento del telescopio

Todos los instrumentos ópticos necesitan un tiempo para alcanzar el "equilibrio térmico". Cuanto mayor sea el tamaño del instrumento y más pronunciado sea el cambio de temperatura, más tiempo se necesita. Espere como mínimo 30 minutos a que se aclimate el telescopio a la temperatura exterior antes de comenzar a observar con él.

Espere a que sus ojos se adapten a la oscuridad

No espere que tras salir de una casa iluminada a la oscuridad de la naturaleza nocturna pueda ver de inmediato nebulosas tenues, galaxias y cúmulos de estrellas, o incluso muchas estrellas, en realidad. Los ojos tardan unos 30 minutos en alcanzar quizás el 80% de su máxima sensibilidad adaptada a la oscuridad. A medida que sus ojos se adapten a la oscuridad, será capaz de ver más estrellas y podrá apreciar detalles más tenues en los objetos que observe a través del telescopio.

Para ver lo que hace en la oscuridad, utilice una linterna con filtro rojo en lugar de una de luz blanca. La luz roja no anula la adaptación de los ojos a la oscuridad de la misma manera que la luz blanca. Una linterna con una luz LED roja es ideal. Aléjese también del alumbrado de las calles, las luces de los porches y los faros de los coches que pueden anular su visión nocturna.

Selección del ocular

El aumento, o la potencia, está determinado por la distancia focal del telescopio y la distancia focal del ocular que utiliza. Por tanto, mediante el uso de oculares de diferentes distancias focales, es posible variar el aumento resultante. Es muy común que un observador posea cinco o más oculares para acceder a una amplia gama de aumentos, lo que le permite elegir el ocular óptimo en función del objeto que desea observar y las condiciones de visibilidad. El refractor altacimutal Observer II de 70 mm incluye oculares Kellner de 25 mm y 10 mm, lo cual bastará para empezar. Puede adquirir otros oculares más adelante si desea contar con más opciones de aumento.

El aumento se calcula de la siguiente manera

Distancia focal del telescopio (mm)

= Aumento

Distancia focal del ocular (mm)

Por ejemplo, el altacimutal Observer II de 70 mm tiene una distancia focal de 700 mm y cuando se utiliza con el ocular de 25 mm incluido ofrece:

$$\frac{700 \text{ mm}}{25 \text{ mm}} = 28x$$

El aumento proporcionado por el ocular de 10 mm es:

$$\frac{700 \text{ mm}}{10 \text{ mm}} = 70x$$

El aumento máximo que puede lograr un telescopio está directamente relacionado con la cantidad de luz que puede absorber. Cuanto mayor sea la apertura, mayor es el aumento que se puede conseguir. En general, una cifra de 50x por pulgada de apertura es el máximo que pueden lograr la mayoría de telescopios. Para aumentos mayores, solo se conseguirán imágenes borrosas y poco agradables. El altacimutal Observer II de 70 mm tiene una apertura de 70 mm o 2,8 pulgadas, por lo que el aumento máximo sería de aproximadamente 140x (2,8 x 50). Para este nivel de aumento, se supone que cuenta con las condiciones atmosféricas ideales para la observación (lo que raramente ocurre).

Recuerde que a medida que aumenta la ampliación, disminuirá el brillo del objeto observado, lo que es un principio inherente de las leyes de la física y no se puede evitar. Si se duplica el aumento, la imagen aparecerá cuatro veces más tenue. Si se triplica el aumento, el brillo de la imagen se reducirá por un factor de nueve.

Comience por utilizar el ocular de 25 mm, luego pruebe a cambiar al ocular de 10 mm si desea un mayor aumento.

Enfoque del telescopio

Figura 13. Los oculares Kellner tienen cilindros roscados que admiten filtros opcionales de 31,75 mm de Orion. Un filtro lunar es útil para reducir el resplandor y ver más detalles de la superficie lunar.

Para enfocar el telescopio, gire las ruedas de enfoque (**figura 10**) hacia adelante o hacia atrás hasta que vea el objeto de destino (por ejemplo, las estrellas, la Luna, etc.) en el ocular. A continuación, haga ajustes más precisos hasta que la imagen sea nítida. Si tiene problemas para lograr el enfoque inicial, tire hacia adentro del tubo del enfocador completamente utilizando las ruedas de enfoque y, a continuación, mientras mira por el ocular, gire lentamente las ruedas de enfoque de manera que el tubo se extienda hacia afuera. Continúe hasta que vea cómo se enfoca el objeto de destino. Al cambiar de ocular, es posible que deba ajustar un poco el enfoque para obtener una imagen nítida con el nuevo ocular.

¿Qué esperar?

Por tanto, ¿qué verá con su telescopio? Debería poder ver las bandas de Júpiter, los anillos de Saturno, los cráteres de la Luna, las fases creciente y menguante de Venus y muchos objetos brillantes de cielo profundo. No espere encontrar los colores de las fotografías de la NASA, ya que estas se toman con cámaras de larga exposición y se les añade "color falso". Nuestros ojos no son lo suficientemente sensibles para ver los colores de los objetos de cielo profundo, salvo en unos pocos de los más brillantes.

Objetos que puede observar

Una vez que está todo configurado y listo para funcionar, es necesario tomar una decisión fundamental: ¿qué quiere observar?

A. La Luna

Con su superficie rocosa, la Luna es uno de los objetos más fáciles e interesantes que puede observar con su telescopio. Es posible observar claramente los cráteres, los mares y las cadenas montañosas de la Luna, ¡desde una distancia de 383.000 kilómetros! Con sus fases en continuo cambio, podrá disfrutar una nueva visión de la Luna cada noche. El mejor momento para observar nuestro único satélite natural es durante una fase parcial, es decir, cuando la Luna no está llena. Durante las fases parciales, se proyectan sobre la superficie sombras que revelan más detalles, especialmente a lo largo del límite entre las zonas iluminada y oscura del disco (llamado el "terminador"). Una Luna llena es demasiado brillante y carente de sombras sobre la superficie para producir una vista satisfactoria. Si observa la Luna cuando está muy por encima del horizonte conseguirá las imágenes más nítidas.

Utilice un filtro lunar opcional para atenuar la Luna cuando sea muy brillante. Basta con enroscarlo en la parte inferior de los oculares (para acoplar un filtro es necesario quitar primero el ocular del enfocador). Descubrirá que un filtro lunar mejora la comodidad de observación y ayuda a resaltar características sutiles de la superficie lunar.

B. Los planetas

Los planetas no permanecen en un sitio fijo como las estrellas, por lo que para encontrarlos deberá consultar las cartas estelares mensuales de OrionTelescopes.com o los mapas que se publican cada mes en Astronomy, Sky & Telescope y otras revistas de astronomía. Venus, Marte, Júpiter y Saturno son los objetos más brillantes del cielo después del Sol y la Luna. Tal vez sean visibles otros planetas, pero probablemente tendrán un aspecto similar a una estrella. Dado que el tamaño aparente de los planetas es bastante pequeño se recomienda, y con frecuencia es necesario, utilizar oculares opcionales de mayor potencia o una lente de Barlow para observaciones detalladas.

B. El Sol

Puede transformar su telescopio nocturno en un visor diurno del Sol instalando un filtro solar de apertura completa opcional sobre la apertura frontal del telescopio. La principal atracción son las manchas solares, que cambian de forma, aspecto y ubicación cada día. Las manchas solares están directamente relacionadas con la actividad magnética del Sol. A muchos observadores les gusta crear dibujos de las manchas solares para efectuar un seguimiento de cómo cambia el Sol de un día a otro.

Nota importante: No mire al Sol con ningún instrumento óptico sin utilizar un filtro solar de fabricación profesional o puede sufrir daños permanentes en los ojos.

D. Las estrellas

Las estrellas aparecerán como puntos de luz parpadeantes. Ni siquiera los telescopios más potentes son capaces de ampliar las estrellas para que se vean como algo más que un punto de luz. No obstante, puede disfrutar de los diferentes colores de las estrellas y observar muchas estrellas dobles y múltiples bastante hermosas. La famosa "doble-doble" de la constelación de Lira y la soberbia estrella doble de dos colores Albireo del Cisne son de las más apreciadas. Para resaltar el color de una estrella, puede ser útil desenfocarla ligeramente.

E. Objetos de cielo profundo

En un cielo oscuro, es posible observar una gran cantidad de fascinantes objetos de cielo profundo, incluidas nebulosas gaseosas, cúmulos de estrellas abiertos y globulares, y varios tipos de galaxias. La mayoría de los objetos de cielo profundo son muy tenues, por lo que es importante encontrar un lugar de observación alejado de la contaminación lumínica.

Para encontrar objetos de cielo profundo con su telescopio, primero tiene que familiarizarse razonablemente con el cielo nocturno. A menos que sepa cómo reconocer la constelación de Orión, por ejemplo, no le será muy fácil localizar la Nebulosa de Orión. Un sencillo planisferio, o rueda estelar, puede ser una herramienta valiosa para aprender las constelaciones y ver cuáles son visibles en el cielo en una determinada noche. Una vez que haya identificado unas cuantas constelaciones, un buen atlas, carta estelar o app de astronomía le será muy útil para localizar objetos de cielo profundo interesantes para observarlos dentro de las constelaciones.

No espere que estos objetos aparezcan tal como se ven en las fotografías de las revistas y de Internet, la mayoría aparecerán como manchas grises oscuras. Nuestros ojos no son lo suficientemente sensibles para ver los colores de los objetos de cielo profundo, salvo en unos pocos de los más brillantes. No obstante, conforme adquiera más experiencia y sus habilidades de observación se agudicen, será capaz de descubrir cada vez más detalles y estructuras sutiles.

5. Accesorios opcionales de interés

- Filtro lunar: un filtro lunar de 31,75 mm reducirá el intenso brillo de la luz solar que refleja la Luna, haciendo que la observación de la Luna sea más cómoda y puedan verse más detalles de la superficie. El filtro se enrosca en la parte inferior de los oculares Kellner que incluye el telescopio (figura 13).
- Lente de Barlow: una lente de Barlow 2x duplica la potencia de aumento de cualquier ocular con el que se utilice, lo que le ofrece una mayor potencia para acercarse a su objeto de destino. Basta con insertarla entre la diagonal y el ocular.
- Diagonal de imagen correcta: también llamada diagonal de inversión de imagen, este accesorio le ofrecerá una vista correctamente orientada a través del telescopio, lo que se recomienda para observación terrestre durante el día.
- Planisferio: una práctica "rueda estelar" que indica las estrellas y constelaciones que son visibles en el cielo en cualquier momento de cualquier noche. Basta con ajustar la fecha y la hora para ver una pequeña representación del cielo nocturno local. Ideal para identificar lo que ve y planificar una sesión de observación nocturna.
- Mapa estelar: más detallado que un planisferio, un mapa estelar es esencial para localizar los objetos celestes interesantes que pueden observarse con el telescopio. Hoy en día, muchas aplicaciones móviles de astronomía incluyen mapas estelares personalizables que puede consultar con un smartphone o tableta mientras utiliza el telescopio.

6. Cuidado y mantenimiento del telescopio

Si cuida razonablemente su telescopio, le durará toda la vida. Guárdelo en un lugar limpio, seco y sin polvo, protegido de los cambios bruscos de temperatura y humedad. No guarde el telescopio al aire libre, aunque es aceptable guardarlo en un garaje o cobertizo. Los componentes pequeños, como oculares y otros accesorios, deben conservarse en una caja protectora o una funda de almacenamiento. Mantenga la cubierta antipolvo en la parte delantera del telescopio cuando no lo esté utilizando.

El telescopio refractor requiere muy poco mantenimiento mecánico. El tubo óptico tiene un acabado de pintura lisa que es bastante resistente a los arañazos. Si aparece un arañazo en el tubo, el telescopio no resultará dañado. Si lo desea, puede aplicar un poco de pintura de retoque para automóviles al arañazo. Las manchas del tubo se pueden limpiar con un paño suave y un limpiador doméstico.

Limpieza de la óptica

Se puede utilizar cualquier líquido o paño de limpieza de lentes ópticas de calidad diseñado específicamente para ópticas con varios revestimientos a fin de limpiar las lentes del telescopio y los oculares. No utilice nunca un limpiacristales normal ni un

líquido de limpieza diseñado para gafas. Antes de comenzar la limpieza, quite las partículas sueltas o el polvo de la lente con un soplador o un cepillo suave. A continuación, aplique un poco de líquido de limpieza a un paño, nunca directamente a la óptica. Limpie la lente suavemente con un movimiento circular y luego retire el exceso con un paño para lentes nuevo. Las manchas y las huellas de dedos de grasa se pueden quitar con este método. Tenga cuidado; si frota con demasiada fuerza puede rayar la lente. En las lentes de mayor tamaño, limpie solo una zona pequeña a la vez, utilizando un paño para lentes nuevo para cada zona. No reutilice nunca los paños.

Al trasladar el telescopio al interior después de una noche de observación es normal que la humedad se acumule en las lentes a causa del cambio de temperatura. Le sugerimos que deje el telescopio y los oculares sin cubrir durante una noche para que la humedad pueda evaporarse.

7. Especificaciones

Lente del objetivo: diámetro de 70 mm, acromática

Distancia focal efectiva: 700 mm

Relación focal: f/10

Revestimientos de las lentes: revestimiento antirreflejos Enfocador: piñón y cremallera, acepta accesorios de 31,75

mm

Oculares: Kellner de 25 mm y 10 mm, con un revestimiento antirreflejos, Diámetro de cilindro de 31,75 mm, roscado para

filtros de Orion

Aumento de los oculares: 28x (con ocular de 25 mm) y 70x

(con ocular de 10 mm)

Telescopio buscador: telescopio buscador de punto rojo

Montura: horquilla altacimutal

Trípode: aluminio

Peso total del instrumento: 2,5 kg.

Garantía limitada a un año

Este producto Orion está garantizado contra defectos en los materiales o mano de obra durante un período de un año a partir de la fecha de compra. Esta garantía es en beneficio del comprador original solamente. Durante este período de garantía, Orion Telescopes & Binoculars reparará o reemplazará, a opción de Orion, cualquier instrumento cubierto por la garantía que resulte ser defectuoso, siempre que se devuelva a portes pagados. Se necesita un comprobante de compra (por ejemplo, una copia de la factura original). Esta garantía solo es válida en el país de compra.

Esta garantía no se aplica si, a juicio de Orion, el instrumento ha sido objeto de mal uso, maltrato o modificación, ni se aplica tampoco al desgaste normal por el uso. Esta garantía le otorga derechos legales específicos. No tiene la intención de eliminar o restringir otros derechos legales bajo las leyes locales sobre consumidores aplicables; sus derechos legales estatales o nacionales de consumidor que rigen la venta de bienes de consumo siguen siendo plenamente aplicables.

Para obtener más información sobre la garantía, visite www.OrionTelescopes.com/warranty.

Atención al cliente:

www.OrionTelescopes.com/contactus
Oficinas corporativas:

89 Hangar Way, Watsonville CA 95076 - EE. UU.

Copyright © 2021 Orion Telescopes & Binoculars. Reservados todos los derechos. Queda prohibida la reproducción, copia, modificación o adaptación de cualquier parte o contenido de estas instrucciones de producto sin el previo consentimiento por escrito de Orion Telescopes & Binoculars.